skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shrestha, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a novel VQA dataset, BloomVQA, to facilitate comprehensive evaluation of large vision-language models on comprehension tasks. Unlike current benchmarks that often focus on fact-based memorization and simple reasoning tasks without theoretical grounding, we collect multiple-choice samples based on picture stories that reflect different levels of comprehension, as laid out in Bloom's Taxonomy, a classic framework for learning assessment widely adopted in education research. Our data maps to a novel hierarchical graph representation which enables automatic data augmentation and novel measures characterizing model consistency. We perform graded evaluation and reliability analysis on recent multi-modal models. In comparison to low-level tasks, we observe decreased performance on tasks requiring advanced comprehension and cognitive skills with up to 38.0\% drop in VQA accuracy. In comparison to earlier models, GPT-4V demonstrates improved accuracy over all comprehension levels and shows a tendency of bypassing visual inputs especially for higher-level tasks. Current models also show consistency patterns misaligned with human comprehension in various scenarios, demonstrating the need for improvement based on theoretically-grounded criteria. 
    more » « less
  2. Dataset bias and spurious correlations can significantly impair generalization in deep neural networks. Many prior efforts have addressed this problem using either alternative loss functions or sampling strategies that focus on rare patterns. We propose a new direction: modifying the network architecture to impose inductive biases that make the network robust to dataset bias. Specifically, we propose OccamNets, which are biased to favor simpler solutions by design. OccamNets have two inductive biases. First, they are biased to use as little network depth as needed for an individual example. Second, they are biased toward using fewer image locations for prediction. While OccamNets are biased toward simpler hypotheses, they can learn more complex hypotheses if necessary. In experiments, OccamNets outperform or rival state-of-the-art methods run on architectures that do not incorporate these inductive biases. Furthermore, we demonstrate that when the state-of-the-art debiasing methods are combined with OccamNets results further improve. 
    more » « less
  3. A critical problem in deep learning is that systems learn inappropriate biases, resulting in their inability to perform well on minority groups. This has led to the creation of multiple algorithms that endeavor to mitigate bias. However, it is not clear how effective these methods are. This is because study protocols differ among papers, systems are tested on datasets that fail to test many forms of bias, and systems have access to hidden knowledge or are tuned specifically to the test set. To address this, we introduce an improved evaluation protocol, sensible metrics, and a new dataset, which enables us to ask and answer critical questions about bias mitigation algorithms. We evaluate seven state-of-the-art algorithms using the same network architecture and hyperparameter selection policy across three benchmark datasets. We introduce a new dataset called Biased MNIST that enables assessment of robustness to multiple bias sources. We use Biased MNIST and a visual question answering (VQA) benchmark to assess robustness to hidden biases. Rather than only tuning to the test set distribution, we study robustness across different tuning distributions, which is critical because for many applications the test distribution may not be known during development. We find that algorithms exploit hidden biases, are unable to scale to multiple forms of bias, and are highly sensitive to the choice of tuning set. Based on our findings, we implore the community to adopt more rigorous assessment of future bias mitigation methods. All data, code, and results are publicly available. 
    more » « less
  4. null (Ed.)
    To understand and quantify the thermal energy transfer in a biological cell, the measurement of thermal properties at a cellular level is emerging as great importance. We report herein a unique technique that utilizes a laser point heat source for temporal temperature rise in a micro-pipette thermal sensor; this technique characterizes heat conduction of a measured sample, the Jurkat cell, thus measuring the sample's thermal conductivity (TC). To this end, we incorporated the computational model in COMSOL to solve for the transient temperature and used the multi-parameter fitting of the experimental data using MATLAB. To address the influence of a Jurkat cell's chemical composition on TC, we compared three structural models for prediction of effective thermal conductivity in heterogeneous materials thereby determining the weight percentage of the Jurkat cell. When considering water and protein as the major constituents, we found that a combination of Maxwell-Euken and Effective Medium Theory modeling provides the closest approximation to published weight percent data and, therefore, is recommended for prediction of the cell composition. We validate the accuracy of the measurement technique, itself, by measuring polyethylene microspheres and observed 1% deviation from published data. The unique technique was determined to be mechanically non-invasive, capable of maintaining viable cells, and capable of measuring the thermal conductivity of a Jurkat cell, which was demonstrated to be 0.538 W/(m⋅K) ± 1%. 
    more » « less
  5. Existing Visual Question Answering (VQA) methods tend to exploit dataset biases and spurious statistical correlations, instead of producing right answers for the right reasons. To address this issue, recent bias mitigation methods for VQA propose to incorporate visual cues (e.g., human attention maps) to better ground the VQA models, showcasing impressive gains. However, we show that the performance improvements are not a result of improved visual grounding, but a regularization effect which prevents over-fitting to linguistic priors. For instance, we find that it is not actually necessary to provide proper, human-based cues; random, insensible cues also result in similar improvements. Based on this observation, we propose a simpler regularization scheme that does not require any external annotations and yet achieves near state-of-the-art performance on VQA-CPv2. 
    more » « less
  6. null (Ed.)
  7. Chart question answering (CQA) is a newly proposed visual question answering (VQA) task where an algorithm must answer questions about data visualizations, e.g. bar charts, pie charts, and line graphs. CQA requires capabilities that natural-image VQA algorithms lack: fine-grained measurements, optical character recognition, and handling out-of-vocabulary words in both questions and answers. Without modifications, state-of-the-art VQA algorithms perform poorly on this task. Here, we propose a novel CQA algorithm called parallel recurrent fusion of image and language (PReFIL). PReFIL first learns bimodal embeddings by fusing question and image features and then intelligently aggregates these learned embeddings to answer the given question. Despite its simplicity, PReFIL greatly surpasses state-of-the art systems and human baselines on both the FigureQA and DVQA datasets. Additionally, we demonstrate that PReFIL can be used to reconstruct tables by asking a series of questions about a chart. 
    more » « less
  8. null (Ed.)
    People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a mixture of new and old instances. While there is neuroscientific evidence that the brain replays compressed memories, existing methods for convolutional networks replay raw images. Here, we propose REMIND, a brain-inspired approach that enables efficient replay with compressed representations. REMIND is trained in an online manner, meaning it learns one example at a time, which is closer to how humans learn. Under the same constraints, REMIND outperforms other methods for incremental class learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND’s robustness to data ordering schemes known to induce catastrophic forgetting. We demonstrate REMIND’s generality by pioneering online learning for Visual Question Answering (VQA). 
    more » « less
  9. null (Ed.)
    Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine learning system's ability to generalize beyond the biases of a training set. OOD benchmarks are designed to present a different joint distribution of data and labels between training and test time. VQA-CP has become the standard OOD benchmark for visual question answering, but we discovered three troubling practices in its current use. First, most published methods rely on explicit knowledge of the construction of the OOD splits. They often rely on ``inverting'' the distribution of labels, e.g. answering mostly 'yes' when the common training answer is 'no'. Second, the OOD test set is used for model selection. Third, a model's in-domain performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit a more balanced distribution of labels. These three practices defeat the objective of evaluating generalization, and put into question the value of methods specifically designed for this dataset. We show that embarrassingly-simple methods, including one that generates answers at random, surpass the state of the art on some question types. We provide short- and long-term solutions to avoid these pitfalls and realize the benefits of OOD evaluation. 
    more » « less